

ABB MEASUREMENT & ANALYTICS | DATA SHEET

Model 266CSH,CST, JSH, JST

Multivariable pressure transmitters

Measurement made easy

Engineered solutions for all applications

Base accuracy

- 0.075 % of calibrated span (266CSH, 266JSH)
- 0.04 % of calibrated span (266CST, 266JST)

266CSH/CST mass flow measurement with compensation, level measurement with compensation for gases, steam and liquids

• Dynamic compensation of pressure and temperature changes

266JSH/JST high-performance transmitter for measuring differential pressure, absolute pressure and process temperature in a single device

Proven sensor technology together with state-of-the-art digital technology

• Large turn down ratio of up to 100:1

Comprehensive range of functions

- Integrated counting function
- Binary output as pulse / frequency output or limit monitor

10-year stability

• 0.15 % of URL

Flexible configuration options

· Local configuration via keys on LCD indicator

New TTG (Through-The-Glass) key technology

 Enables quick and easy local configuration without the need to open the cover - even in environments with explosion protection

Full compliance with Pressure Equipment Directive (PED) category III

Introduction

266CSH / 266CST

Thanks to their multisensor technology, these transmitters are capable of measuring three separate process variables at the same time and offer the option of dynamic calculation of the following values:

- Mass flow for gases, steam, and liquids by means of dynamic compensation
- Standard volume flow for gases by means of dynamic compensation
- · Heat flow for water and steam
- Drum water level and level measurement with density compensation of liquids

The differential pressure and absolute pressure are measured by two integrated sensors. The process temperature is measured by an external standard Pt100 resistance thermometer.

Flow calculation

The flow calculation carried out by these transmitters includes compensation of pressure and / or temperature as well as more complex variables such as discharge coefficient, thermal expansion, Reynolds number, and compressibility factor.

The 266CXX pressure transmitters include flow equations for superheated steam, saturated steam, gases, and liquids - so you only need one device for your system. Multivariable transmitters represent a more economical solution than the designs that have been used for this type of measuring point up to now, in which three different transmitters for differential pressure, absolute pressure, and temperature report their values to a DCS, PLC, or flow computer.

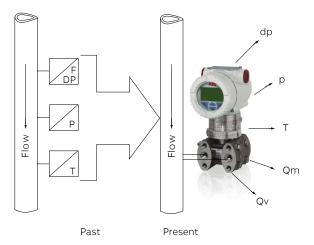


Figure. 1: Flow measurement - past and present

The dynamic mass flow of the 266CXX is calculated using the following equation:

$$Qm \approx \frac{C}{\sqrt{1-\beta^4}} \cdot \epsilon \cdot d^2 \cdot \sqrt{\rho_1 \cdot dp}$$

Qm = Mass flow

C = Discharge coefficient

 β = Diameter ratio

 ϵ = Gas expansion factor

d = Inside diameter of the differential flow sensor

dp = Differential pressure

 ρ = Density

The flow calculation process is based on the following standards:

- AGA 3
- DIN EN ISO 5167

...Introduction

Flow coefficient

The discharge coefficient is defined as the actual flow divided by the theoretical flow. It corrects the theoretical equation for the effect on the velocity profile (Reynolds number), assuming that no energy is lost between between the pressure taps and pressure tap location. It is dependent on the differential flow sensor, the diameter ratio, and the Reynolds number. Compensation for the discharge coefficient ensures a high level of measuring accuracy for flow measurement with primary elements.

Gas expansion factor

The gas expansion factor corrects for density differences between pressure taps due to expansion of compressible media. It does not apply to liquids which are essentially noncompressible.

The gas expansion factor is dependent on the diameter ratio, the isentropic exponent, the differential pressure, and the static pressure of the medium.

Diameter ratio

The diameter ratio is dependent on the inside diameter of the differential flow sensor and the pipe diameter, which in turn are subject to temperature functions.

If the temperature of the medium being measured changes, the material of the process pipe and differential flow sensor expands or contracts.

The thermal expansion coefficients are dependent on the material of the pipe and differential flow sensor, and are used for calculating the change in diameters. This ensures a high level of flow accuracy in applications with low and high temperatures.

Medium density

The medium density has a direct effect on the flow calculation.

The 266CXX pressure transmitters compensate for the medium density resulting from changes in temperature and / or pressure as follows:

- Gases as a function of p and T based on gas laws, taking compressibility factors into account; for natural gas, based on AGA 8 or SGERG
- Superheated steam as a function of p and T based on steam tables
- Saturated steam as a function of p based on steam tables
- · Liquids as a function of T

Mass flow calculations

With the 266CXX pressure transmitters, mass flow calculations

can be configured for the following differential flow sensors:

- · Orifice corner pressure taps, ISO
- Orifice flange pressure taps, ISO
- Orifice D and D/2 pressure taps, ISO
- · Orifice corner pressure taps, ASME
- · Orifice flange pressure taps, ASME
- Orifice D and D/2 pressure taps, ASME
- Orifice flange pressure taps, AGA 3
- Orifice 2.5D and 8D pressure taps
- Small bore orifice, flange pressure taps
- Small bore orifice, corner pressure taps
- ISA 1932 nozzle
- Long radius nozzle wall pressure taps, ISO
- · Long radius nozzle wall pressure taps, ASME
- · Standard Venturi pipe, rough-cast inlet, ISO
- Standard Venturi pipe, machined inlet, ISO
- · Standard Venturi pipe, welded inlet, ISO
- Standard Venturi pipe, rough-cast inlet, ASME
- Standard Venturi pipe, machined inlet, ASME
- · Standard Venturi pipe, welded inlet, ASME
- · Venturi, nozzle, ISO
- Pitot tube
- · Wedge element
- Plus all non-standard flow sensors

ABB offers a complete range of differential flow sensors. We provide the full testing and documentation that your application needs. Whether the requirement is a single orifice plate with a simple Certificate of Conformity or a project requiring full material inspection, traceability, third-party verification, calibration and comprehensive data dossiers – ABB can satisfy all of the requirements. In addition compact solutions are available, OriMaster, a compact orifice flowmeter, and PitoMaster, a compact pitot flowmeter.

Level measurement

The following functions are available for level measurement with pressure and temperature compensation:

- Level measurement with temperature compensation, on open tank
- · Level measurement with pressure and temperature
- compensation, on closed tank, with and without diaphragm seal
- Fill volume measurement by means of tank shape specification
- Drum water level measurement

All of the functionality, including all the data required for compensated mass flow or for level measurement, is configured entirely using the PC-based DTM 266-MV. A simplified setting method, which uses the (optional) LCD indicator, is available for flow and level calculation. EDD-based systems such as handheld terminals are also supported.

266JSH / 266JST

This intelligent transmitter provides the user with precise measurements of differential pressure, absolute pressure, and process temperature (the latter by means of an externally connected Pt100 resistance thermometer), in just one device.

Functional specification

Measuring range limits and span limits

		Measuring range lo	Measuring range lower limit (LRL)		Minimum measuring span	
Sensor Code	Measuring range upper limit (URL)	Models 266CSH/CST	Models 266JSH/JST	Models 266CSH/CST	Models 266JSH/JST	
	1 kPa	0	-1 kPa	0.05 kPa	0.05 kPa	
Α	10 mbar		-10 mbar	0.5 mbar	0.5 mbar	
	4 inH2O		-4 inH2O	0.2 inH2O	0.2 inH2O	
	6 kPa	0	-6 kPa	0.2 kPa	0.2 kPa	
С	60 mbar		-60 mbar	2 mbar	2 mbar	
	24 inH2O		-24 inH2O	0.8 inH2O	0.8 inH2O	
	40 kPa	0	-40 kPa	0.4 kPa	0.4 kPa	
F	400 mbar		-400 mbar	4 mbar	4 mbar	
	160 inH2O		-160 inH2O	1.6 inH2O	1.6 inH2O	
	250 kPa	0	-250 kPa	2.5 kPa	2.5 kPa	
L	2500 bar		-2500 bar	25 mbar	25 mbar	
_	1000 inH2O		-1000 inH2O	10 inH2O	10 inH2O	
	2000 kPa	0	-2000 kPa	20 kPa	20 kPa	
N	20 bar		-20 bar	0.2 mbar	0.2 mbar	
	290 psi		-290 psi	2.9 psi	2.9 psi	
	10000 kPa	-	-10000 kPa	-	100 kPa	
R	100 bar		-100 bar		1 bar	
	1450 psi		-1450 psi		14.5 psi	

Absolute pressure sensor (second sensor)

Sensor Code	Measuring range upper limit (URL)	Measuring range lower limit (LRL)	Minimum measuring span	
	600 kPa	0 abs	6 kPa	
1	6 bar		0.06 bar	
	87 psi		2.9 psi	
	2000 kPa	0 abs	20 kPa	
2	20 bar		0.2 bar	
	290 psi		2.9 psi	
	10000 kPa	0 abs	100 kPa	
3	100 bar		1 bar	
	1450 psi		14.5	
	41000 kPa	o abs	410 kPa	
4	410 bar		4.1 bar	
	5945 psi		59.5 psi	

Span limits

Maximum span = URL

(for differential pressure transmitter, can be adjusted up to \pm URL (TD = 0.5) within the measuring range limits).

Important

To optimize measuring accuracy, it is recommended that you select the transmitter sensor code with the lowest turn down ratio.

Recommendation for square root function

At least 10 % of measuring range upper limit (URL)

Zero position suppression and elevation

The zero position and span can be set to any value within the measuring range limits listed in the table if:

• already set span ≥ minimum span

Temperature input

Process temperature range -200 \dots 850 °C (-328 \dots 1562 °F) with external resistance thermometer (Pt100) in four-wire circuit

Damping

Configurable time constant between 0 and 60 s. This is in addition to the sensor response time.

Warm-up time

Ready for operation as per specifications in less than 10 s with minimum damping.

Insulation resistance

>100 M Ω at 500 V DC (between terminals and ground).

Operating limits

SEE ALSO DATA SHEET DS/S26 FOR INFORMATION ON OTHER POSSIBLE RESTRICTIONS BASED ON DIAPHRAGM SEAL VERSIONS.

Pressure limits

Gauge pressure limits

The transmitter models 266CRX/JRX can operate without damage within the following overpressure limits

Static pressure limits

The transmitter models 266CSX/JSX can operate within the specifications with the following limits:

Sensors	Filling fluid	Overpressure limits	Sensors	Filling
Sensor A	Silicone oil	0.5 kPa abs., 5 mbar abs., 0.07 psia and 0.6 MPa, 6 bar, 87 psi or 2 MPa, 20 bar, 290 psi depending on code variant selected 1)	Sensor A	Silicor
Sensor A	Fluorocarbon (Galden)	17.5 kPa abs., 175 mbar abs., 2.5 psia and 0.6 MPa, 6 bar, 87 psi or 2 MPa, 20 bar, 290 psi depending on code variant selected 1)	Sensor A	Fluoro (Galde
Sensors C to R	Silicone oil	0.5 kPa abs., 5 mbar abs., 0.07 psia and 2 MPa, 20 bar, 290 psi or 10 MPa, 100 bar, 1450 psi, or 41 MPa, 410 bar, 5945 psi depending on code variant selected 1)	Sensors C to R	Silicon
Sensors C to R	Fluorocarbon (Galden)	17.5 kPa abs., 175 mbar abs., 2.5 psia and 2 MPa, 20 bar, 290 psi or 10 MPa, 100 bar, 1450 psi, or 41 MPa, 410 bar, 5945 psi depending on code variant selected 1)	Sensors C to R	Fluoro (Galde
			1) 1 MPa, 10 bar, 145 ps	si for Kynar-

^{1) 1} MPa, 10 bar, 145 psi for Kynar-PVDF

Sensors	Filling fluid	Static pressure limits
Sensor A	Silicone oil	3.5 kPa abs., 35 mbar abs., 0.5 psia and 0.6 MPa, 6 bar, 87 psi, or 2 MPa, 20 bar, 290 psi depending on code variant selected 1)
Sensor A	Fluorocarbon (Galden)	17.5 kPa abs., 175 mbar abs., 2.5 psia and 0.6 MPa, 6 bar, 87 psi, or 2 MPa, 20 bar, 290 psi depending on code variant selected 1)
Sensors C to R	Silicone oil	3.5 kPa abs., 35 mbar abs., 0.5 psia and 2 MPa, 20 bar, 290 psi, or 10 MPa, 100 bar, 1450 psi or 41 MPa, 410 bar, 5945 psi depending on code variant selected 1)
Sensors C to R	Fluorocarbon (Galden)	17.5 kPa abs., 175 mbar abs., 2.5 psia and 2 MPa, 20 bar, 290 psi, or 10 MPa, 100 bar, 1450 psi or 41 MPa, 410 bar, 5945 psi depending on code variant selected 1)

Kynar-PVDF

Test pressure

The transmitters can withstand a pressure test with the following line pressure without leaking:

Model	Test pressure
266CSX/JSX	1.5 x nominal pressure (static pressure limit) simultaneously on both sides 1)

¹⁾ Meets hydrostatic test requirements of ANSI/ISA–S 82.03.

Temperature limits °C (°F)

Environment

This is the operating temperature.

All models	Ambient temperature limits
Silicone oil	-40 85 °C (-40 185 °F)
Fluorocarbon (Galden)	-40 85 °C (-40 185 °F)

All models	Ambient temperature limits
Integral LCD display	-40 85 °C (-40 185 °F)
Viton gasket	-20 85 °C (-4 185 °F)
PTFE gasket	-20 85 °C (-4 185 °F)

Below -20 C (-4 °F) and above 70 °C (158 °F), it may no longer be possible to read the LCD display clearly.

Important

For applications in explosive environments, the temperature range specified on the certificate / approval applies dependent upon the degree of protection sought.

Process

All models	Process temperature limits
Silicone oil	-40 121 °C (-40 250 °F) 1)
Fluorocarbon (Galden)	-40 121 °C (-40 250 °F) 2)
Viton gasket	-20 121 °C (-4 250 °F)
PTFE gasket	-20 85 °C (-4 185 °F)

^{1) 85 °}C (185 °F) for applications under 10 kPa, 100 mbar abs., 1.45 psia up to 3.5 $\,$ kPa abs., 35 mbar abs., 26 mm Hg

Storage

Models 266XST	Storage temperature range
Storage temperature	-50 85 °C (-58 185 °F)
Integral LCD display	-40 85 °C (-40 185 °F)

	Humidity during storage
Relative humidity	Up to 75%

^{2) 85 °}C (185 °F) for applications below atmospheric pressure up to 17.5 kPa abs., 175 mbar abs., 131 mm Hg

Limits for environmental effects

Electromagnetic compatibility (EMC)

Meets requirements of EN 61326 Overvoltage strength (with surge protection): 4 kV (in acc. with IEC 1000-4-5 EN 61000-4-5).

Pressure Equipment Directive (PED)

Instruments with a maximum operating pressure of 41 MPa, 410 bar, 5945 psi comply with Directive 2014/68/EU category III, module H.

Humidity

Relative humidity: Up to 100 %. Condensation, icing: Permissible.

Vibration resistance

Acceleration up to 2 g at frequencies of up to 1000 Hz (according to IEC 60068-2-6).

Acceleration limited to 1 g for housing out of stainless steel.

Shock resistance

Acceleration: 50 g Duration: 11 ms (according to IEC 60068-2-27).

IP rating

The transmitter is dust and sand-proof and protected against

immersion effects in accordance with EN 60529 (2001) with

IP 67 (IP 68 on request), by NEMA 4X, or by JIS C0920.

Hazardous atmospheres

With or without integral LCD display

Type of protection "Intrinsic safety":

Approval in accordance with ATEX Europa (code E1) and IEC Ex (code E8) II 1 G Ex ia IIC T6/T5/T4 and II 1/2 G Ex ia IIC T6/T5/T4; IP67. II 1 D Ex iaD 20 T85°C and II 1/2 D Ex iaD 21 T85°C; IP67 NEPSI China (Code EY) Ex ia IIC T4 \Box T6, DIP A20TA, T4 \sim T6.

Type of protection "Flameproof (enclosure)":

Approval in accordance with ATEX Europa (code E2) and IEC Ex (code E9) II 1/2 G Ex d IIC T6 and II 1/2 D Ex tD A21 T85 °C (–50 °C \leq Ta \leq +75 °C); IP67. NEPSI China (Code E2) Ex d IIC T6, DIP A21TA, T6.

Type of protection "nL":

ATEX Europa (code E3) and IEC Ex (code ER) Declaration of Conformity II 3 G Ex nL IIC T6/T5/T4 and II 3 D Ex tD A22 T85 °C; IP67. NEPSI China (code EY) Declaration of conformity Ex nL IIC T4 \Box T6, DIP A22TA, T6.

FM approvals for USA (code E6) and FM approvals for Canada (code E4):

- Explosionproof (US): Class I, Div. 1, Groups A, B, C, D
- Explosionproof (Canada): Class I, Div. 1, Groups B, C, D
- Dust ignitionproof : Class II, Div. 1, Groups E, F, G
- Suitable for: Class II, Div. 2, Groups F, G; Class III, Div. 1, 2
- · Nonincendive: Class I, Div. 2, Groups A, B, C, D
- Intrinsically safe: Class I, II, III, Div. 1, Groups A, B, C, D, E, F, G

Class I, Zone 0 AEx ia IIC T6/T4, Zone 0 (FM US)

Class I, Zone 0 Ex ia IIC T6/T4, Zone 0 (FM Canada)

ATEX combined (code EW = E1 + E2 + E3), (code E7 = E1 + E2)

ATEX combined and FM approvals (code EN = EW + E4 + E6)

Combined FM approvals for USA and Canada

- · Intrinsic safety (Code EA)
- Flameproof (enclosure) (Code EB)
- Non-incendive (Code EC)

IEC combined (code EH = E8 + E9), (code EI = E8 + E9 + ER)

NEPSI combined (code EP = EY + EZ), (code EQ = EY + EZ + ES)

- EAC-Ex (GOST) Russia, Kazakhstan, Belarus,), based on ATEX
- Inmetro (Brazil), based on ATEX

For ambient temperatures -40 ... 85°C (-40 ... 185°F) the information based on the temperature classes in the associated certificates, must be complied with. The temperature sensor circuit (Pt100) and the digital output (pulse / limit value output) must be connected in accordance with the requirements of the Ex certificate.

Specification – electrical data and options

Power supply

The transmitter operates from 10.5 ... 42 V DC with no load and is protected against reversed polarity (additional loads enable operation above 42 V DC).

During use in Ex ia zones and in other intrinsically safe applications, the power supply must not exceed 30 V DC.

Ripple

Max. 20 mV over a 250 Ω load as per HART specifications.

Load limitations

Total loop resistance at 4 ... 20 mA and HART:

R ($k\Omega$)=Voltage supply –Minimum operating voltage (V DC)

A minimum resistance of 250 Ω is required for HART communication.

Output signal

Two-wire output, 266CXX:

4 ... 20 mA based on mass / standard volume flow or fill level, full compensation of all pressure (P) and temperature (T) effects.

Two-wire output, 266JXX:

 $4 \dots 20 \text{ mA}$ related to differential pressure, pressure, or temperature

The HART communication provides the digital process variables which are superimposed on the 4 to 20 mA signal (protocol in accordance with Bell 202 FSK standard).

Digital output (pulse / limit output)

This digital output can be set as a pulse or limit output (transistor output) by making parameter changes using the software.

NPN transistor with open collector output

Contact switching capacity	10 30 V, maximum 120 mA DC	
Low-level output voltage	0 2 V	
High-level output voltage	Maximum 30 V	
Quiescent current	500 uA	

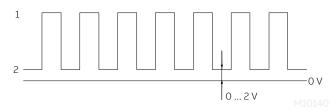


Figure 2: High and low level (pulse output)

1 High level | 2 Low level

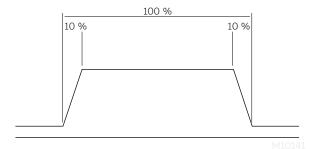


Figure 3: Edge steepness

Pulse output

The scaled, electrically isolated pulse output can be used for

flow measurement by means of an external counter. Pulse output frequency with 100 %

output

Maximum 10 kHz

Duty cycle 50 % \pm 10 % @ 0.1 Hz to 10 kHz Minimum pulse width 50 μ s at 10 kHz, duty cycle 1:1

Limit output

The output is set to a static high or low signal when a given limit is overshot / undershot.

Output function, model 266CXX

The 4 ... 20 mA output signal is not linear; instead, it corresponds to the compensated flow or fill level.

Output function, model 266JXX

The 4 ... 20 mA output signal corresponds to the differential pressure, pressure, or temperature, depending on the configuration.

Output current limits (according to NAMUR standard)

Overload condition

- Lower limit: 3.8 mA (configurable from 3.8 ... 4 mA)
- Upper limit: 20.5 mA (configurable from 20 ... 21 mA)

Alarm current

- Minimum alarm current: 3.6 mA (configurable from 3.6 ... 4 mA)
- Maximum alarm current: 21 mA (configurable from 20 ... 22 mA)

Standard setting: High alarm current (max. alarm current)

Process diagnostics (PILD)

Plugged impulse line detection (PILD) generates a warning via the HART communication. The device can also be configured to drive the analog output signal to the "alarm current".

...Specification – electrical data and options

LCD display

M10142

Figure 4: Integral LCD display with TTG operation

Integral LCD display (code L1)

Wide screen LCD display, 128×64 pixel, 52.5×27.2 mm (2.06×1.07 in.), dot matrix, multilingual.

Four buttons for device configuration and management.

Easy setup for quick commissioning.

Customized visualizations which the user can select.

Total value and actual value flow indication.

The display can also be used to show static pressure, sensor temperature, and diagnosis notice, as well as make configuration settings.

Integral LCD display with TTG-(Through-The-Glass) operation (code L5)

As with the integral LCD display above, but featuring an innovative TTG (Through–The–Glass) button technology which can be used to activate the device's configuration and management menus without having to remove the transmitter housing cover.

The TTG (Through–The–Glass) buttons are protected against accidental activation.

Specification - measuring accuracy

Stated at reference condition to IEC 60770 ambient temperature of 20 °C (68 °F), relative humidity of 65 %, atmospheric pressure of 1013 hPa (1013 mbar), mounting position with vertical diaphragm and zero based range for transmitter with isolating diaphragms in AISI 316 L ss or Hastelloy and silicone oil fill and HART digital trim values equal to 4 and to 20 mA span end points.

Unless otherwise specified, errors are quoted as % of span.

Some performance referring to the Upper Range Limit are affected by the actual turndown (TD) as ratio between Upper Range Limit (URL) and calibrated span. IT IS RECOMMENDED TO SELECT THE TRANSMITTER SENSOR CODE PROVIDING THE TURNDOWN VALUE AS LOWEST AS POSSIBLE TO OPTIMIZE PERFORMANCE CHARACTERISTICS.

Dynamic behavior (according to IEC 61298-1)

Sensor	
Sensor F to R	150 ms
Sensor C	400 ms
Sensor A	1000 ms
266CXX: Reaction time for all sensors	70 ms
266JXX: Reaction time for all sensors	40 ms

Step response time (total) = reaction time + time constant

Measuring error

% of calibrated span, consisting of terminal-based nonlinearity, hysteresis, and non-repeatability.

Model	DP Sensor	For TD range	Measuring error
	A to R 1)	From 1:1 to 10:1	± 0.075 %
266CSH,	A	From 10:1 to 20:1	± (0.075 + 0.005 x TD - 0.05) %
266JSH	С	From 10:1 to 30:1	± (0.075 + 0.005 x TD - 0.05) %
	F to R 1)	From 10:1 to 100:1	± (0.075 + 0.005 x TD - 0.05) %
	A to R 1)	From 1:1 to 10:1	± 0.04 %
266CST,	A	From 10:1 to 20:1	± (0.04 + 0.005 x TD - 0.05) %
266JST	С	From 10:1 to 30:1	± (0.04 + 0.005 x TD - 0.05) %
	F to R 1)	From 10:1 to 100:1	± (0.04 + 0.005 x TD - 0.05) %

¹⁾ Sensor R not with model 266CSH/CST

Recommendation for square root function

At least 10 % of upper measuring range limit (URL)

Model	Pabs sensor (second sensor)	Measuring error
266CXX 266JXX	1 to 4	± 0.1 %
Model	Process temperature measurement (Pt100) in acc. with IEC 60751	Measuring error - Transmitter
		component

266CXX: The measuring accuracy of the mass or standard volume flow is not affected by the accuracy of the dp, p, and T measurement alone; rather, it also depends upon the primary device used (discharge coefficient), the pressure and temperature range to be compensated, as well as other parameters.

In typical applications, the flow measurement accuracy (without the primary device accuracy) is \pm 0.7 ... 0.9 % of the mass flow.

Ambient temperature

Per 20 K change within the limits of -40 to 85 °C (per 36 °F change within the limits of -40 to 185 °F):

Model	Sensor	For TD range	
266CSH,	A	10:1	± (0.08 % URL + 0.06 % measuring span)
266JSH	C to R 1)	10:1	± (0.04 % URL + 0.06 % measuring span)
266CST	Α	10:1	± (0.06 % URL + 0.045 % measuring span)
266JST	C to R 1)	10:1	± (0.03 % URL + 0.045 % measuring span)

1) Sensor R not with model 266CSH/CST

In the event of a change to the ambient temperature of -10 °C to 60 °C (14 to 140 °F):

Model	Sensor	For TD range	
266CSH,	A	10:1	± (0.16 % URL + 0.065 % measuring span)
	C to R 1)	10:1	± (0.08 % URL + 0.065 % measuring span)
266CST	Α	10:1	± (0.12 % URL + 0.05 % measuring span)
266JSH 266CST	C to R 1)	10:1	± (0.06 % URL + 0.05 % measuring span)

¹⁾ Sensor R not with model 266CSH/CST

...Specification - measuring accuracy

Per 10 K change within the limits of -40 to -10 °C or 60 to 85 °C

(per 18 °F change within the limits of -40 to 14 °F or 140° to 185 °F):

Model	Sensor	For TD range	
266CSH,	Α	10:1	± (0.66 % URL + 0.04 % measuring span)
266JSH	C to R 1)	10:1	± (0.033 % URL + 0.04 % measuring span)
266CST	А	10:1	± (0.05 % URL + 0.03 % measuring span)
266JST	C to R 1)	10:1	± (0.025 % URL + 0.03 % measuring span)

¹⁾ Sensor R not with model 266CSH/CST

Absolute pressure sensor

± (0.08 % URL + 0.08 % measuring span):

Limited to \pm (0.1 % URL + 0.1 % measuring span) for the entire temperature range of 125 K within the limits of $-40 \dots 85$ °C (-40 ... 185 °F).

Static pressure

(zero signal errors may be calibrated out at operating pressure)

Measuring range	Sensors A	Sensors C, F, L, N	Sensor R
	Up to 2 bar:	Up to 100 bar:	Up to 100 bar:
Zero signal error	0.05 % URL	0.05 % URL	0.1 % URL
Zero signal error	> 2 bar: 0.05 %	> 100 bar: 0.05 %	> 100 bar: 0.1 %
	URL/100 bar	URL/100 bar	URL/100 bar
	Up to 2 bar:	Up to 100 bar:	Up to 100 bar:
Span error	0.05 % span	0.05 % span	0.1 % span
Span en oi	> 2 bar: 0.05 %	> 100 bar: 0.05 %	> 100 bar: 0.1 %
	span/100 bar	span/100 bar	span/100 bar

Power supply

Within the limit values for the voltage / load, the total influence is less than $0.005\,\%$ of the upper measuring range limit per volt.

Load

Within the load / voltage limits, the total influence is negligible.

Electromagnetic field

Meets all requirements of EN 61326.

Common-mode interference

No influence from 100 V rms @ 50 Hz, or 50 V DC

Mounting position

Rotations in the plane of the diaphragm have a negligible effect. A tilt from the vertical of up to 90° causes a zero point shift of up to 0.35 kPa (3.5 mbar, 1.4 inH2O), which can be corrected by making an appropriate zero position adjustment. There is no effect on the measuring span.

Long-term stability

Sensors C to R:

 \pm 0.15 % of URL over a period of 10 years (\pm 0.05 % URL/ year)

Sensor A:

± 0.3 % of URL over a period of 10 years (± 0.2 % URL/year)

Total performance

Only for differential pressure measurement; similar to DIN 16086.

Within an ambient temperature change range of -10 to 60 °C (14 to 140 °F), up to 10 MPa, 100 bar, 1450 psi static pressure

Model	Sensor	For TD range	Total performance (DP)
266CSH 266JSH	C to N	1:1	± 0.17 % of calibrated span
266RST 266JST	C to N	1:1	± 0.14 % of calibrated span

The total performance includes the measuring error (nonlinearity including hysteresis and non-repeatability), the thermal change in the ambient temperature as regards the zero signal and measuring span, as well as the effect of the static pressure on the zero signal and measuring span.

$$E_{Mperf} = \sqrt{(E_{\Delta Tz} + E_{\Delta Ts})^2 + E_{\Delta Ps}^2 + E_{lin}^2}$$

 E_{Mperf} = Total Performance

 $E_{\Delta Tz}$ = Effect of the ambient temperature on the zero signal

E_{ATs} = Effect of the ambient temperature on the measuring span

 $E_{\text{APs}}~$ = Effect of the static pressure on the measuring span

E_{lin} = Measuring error

Specification - physical

(Please refer to the order information to check the availability of different versions of the relevant model)

Materials

Process separating diaphragms 1)

Stainless steel 1.4435 (AISI 316L); Hastelloy C276; Monel 400; Monel 400, gold-plated; tantalum

Process flanges, adapters, screw plugs, and vent / drain valves 1)

Stainless steel 1.4404 / 1.4408 (AISI 316L); Hastelloy C276; Monel 400; Kynar (flange made from stainless steel AISI 316L with PVDF insert)

Screws and nuts

Screws and nuts made from stainless steel AISI 316, class A4-70 as per UNI 7323 (ISO 3506) in compliance with NACE MR0175 Class II.

Gaskets 1)

Viton (FPM); Buna (NBR); EPDM; PTFE or FEP-coated Viton (only for PVDF Kynar process connection); graphite

Sensor filling fluid

Silicone oil, fluorocarbon (Galden)

Sensor housing

Stainless steel 1.4404 (AISI 316L)

Electronics housing and cover

Aluminum alloy (copper content \leq 0.3 %) with baked epoxy finish (color: RAL 9002); stainless steel AISI 316L.

O-ring cover

Buna N (Perbunan)

Mounting bracket 2)

Galvanized C steel with chromium passivation; stainless steel AISI 316, AISI 316L.

Local zero point, measuring span, and write protection settings

Fiber glass-reinforced polyphenylene oxide (removable)

Plates

Stainless steel (AISI 316) for transmitter name plate, certification plate, optional measuring point tag plate / settings plate fastened to the electronics housing, and optional tag plate with customer data. All plates laser-labeled.

¹ Transmitter parts that come into contact with fluid

U-bolt material: stainless steel AISI 400;

screw material: high-strength alloy steel or stainless steel AISI 316

...Specification - physical

Calibration

Standard:

 0 to measuring range upper limit, for ambient temperature and atmospheric pressure
 Optional:

· To specified measuring span

Optional extras

Mounting bracket

For vertical and horizontal 60 mm (2 in.) pipes or wall mounting

LCD display

Can be rotated in 90° increments into 4 positions

Additional tag plates

Code I2: For measuring point tag (up to 30 characters) and calibration specifications (up to 30 characters: lower and upper value plus unit), attached to transmitter housing.

Code I1: For customer data (4 lines with 30 characters each), attached to transmitter housing with wire.

Overvoltage protection

Code S2

Cleaning stage for oxygen application (O2)

Code P1

Certificates (inspection, implementation, characteristics, material certificate)

Code Cx and Hx

Name plate and operating instruction language

Code Tx and Mx

Communication plug connector

Code Ux

Process connections

Flanges: 1/4-18 NPT on the process axis Adapters: 1/2-14 NPT on the process axis

Center distance:

54 mm (2.13 in.) between flanges; 51 mm, 54 mm, or 57

(2.01 in., 2.13 in., or 2.24 in.) between adapters

Fastening screw threads:

7/16–20 UNF with 41.3 mm center distance

or with process flange code C:

M10 with operating pressures of up to 10 MPa, 100 bar, 1450 psi

M12 with higher operating pressures of up to 41 MPa, 410 bar, 5945 psi

Electrical connections

Two 1/2-14 NPT or M20 x 1.5 threaded bores for cable glands, directly on housing.

Terminals

Three connections for signal / external display, four connections for a Pt100 resistance thermometer with 4-wire technology, and two connections for the digital output (pulse / alarm output). For wire cross sections of up to 2.5 mm2 (14 AWG) and connection points for testing and communication purposes.

Grounding

Internal and external ground terminals are provided for 6 mm2 (10 AWG) wire cross sections.

Mounting position

The transmitters can be installed in any position.

The electronic housing can be rotated into any position. A stop is provided to prevent overturning.

Weight

(without options)
Approximately 3.8 kg (8.4 lb); add 1.5 kg (3.3 lb) for housings
made from stainless steel.
Add 650 g (1.5 lb) for packaging

Packaging

Carton with dimensions of approx. $28 \times 23 \times 24 \text{ cm} (11 \times 9 \times 9 \text{ in.})$

Configuration

Standard configuration

Transmitters are calibrated at the factory to the customer's specified measuring range. The calibrated range and measuring point number are provided on the name plate. If this data has not been specified, the transmitter will be delivered with the plate left blank and the following configuration:

Physical unit kPa 4 mA Zero

20 mA Measuring range upper

limit (URL)

Output 266CXX: Square root

266JXX: Linear

Damping 1 s

Transmitter interference mode High alarm

Software tag

(max. 8 characters) Blank

Optional LCD display PV in kPa; output in mA

and in percent as

bargraph

Any or all of the configurable parameters listed above - including the lower and upper range values (with the same unit of measurement) - can easily be changed using a portable HART handheld communicator or a PC running the configuration software with the DTM for 266 models. Specifications concerning the flange type and materials, O-ring and vent / drain valve materials, and additional device options are stored in the transmitter database.

Customer-specific configuration (option N6)

The following information can be specified in addition to the standard configuration parameters:

Description 16 alphanumeric

characters

Supplementary information 32 alphanumeric

characters

Date Day, month, year

Mounting dimensions

(not design data) - dimensions শ্রিশার পিরিch)

Transmitter with barrel housing - Horizontal flanges

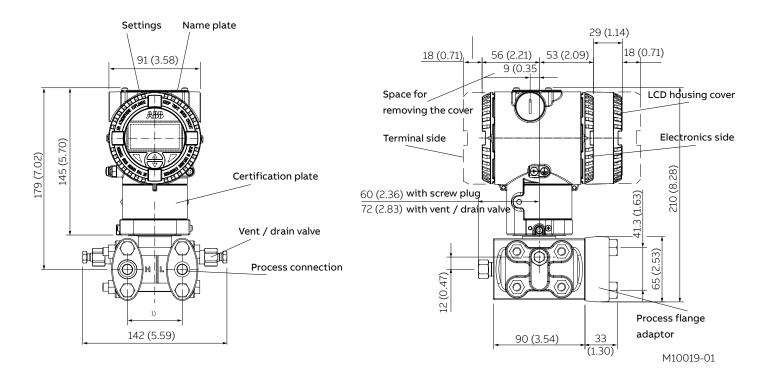


Figure 5: Barrel housing - Horizontal flanges

Note: Process connection and gasket groove comply with IEC 61518. Thread for attaching adapter flanges or other components (e.g., manifold) to process flange: 7/16 -20 UNF.

^{1) 54 (2.13)} mm (in.) via 1/4 - 18 NPT process flanges

^{51 (2.01), 54 (2.13),} or 57 (2.24) mm (in) via 1/2 - 14 NPT adapter flanges.

Transmitter with barrel housing - Vertical flanges

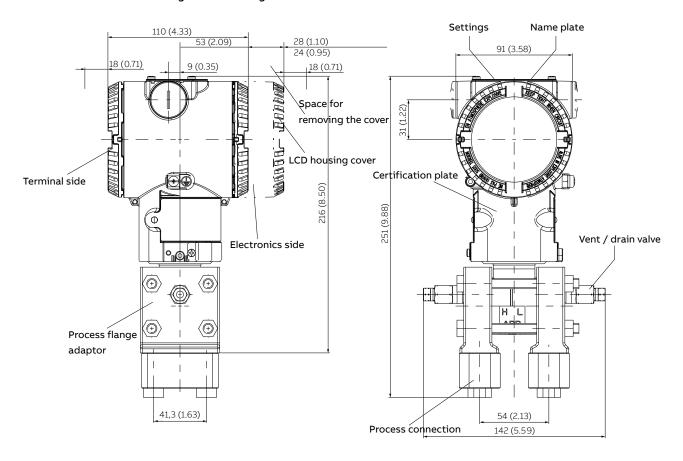
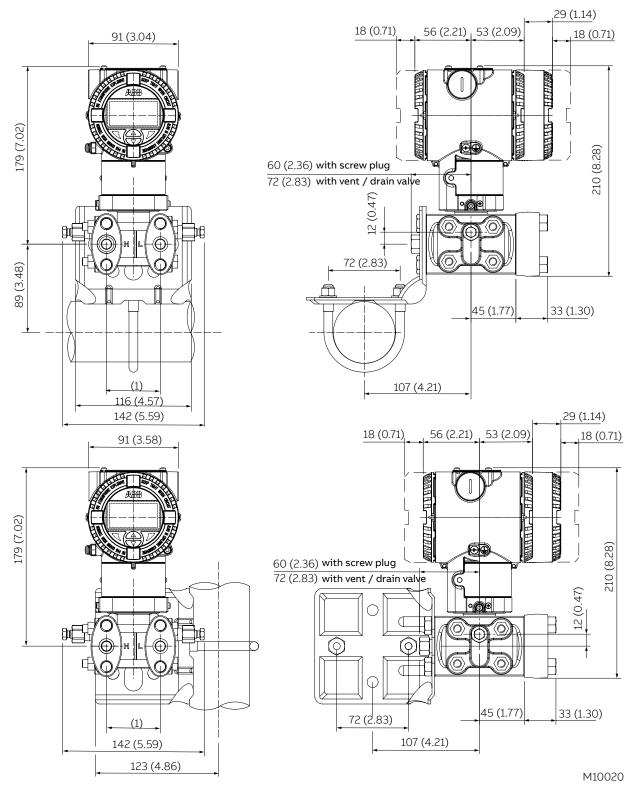


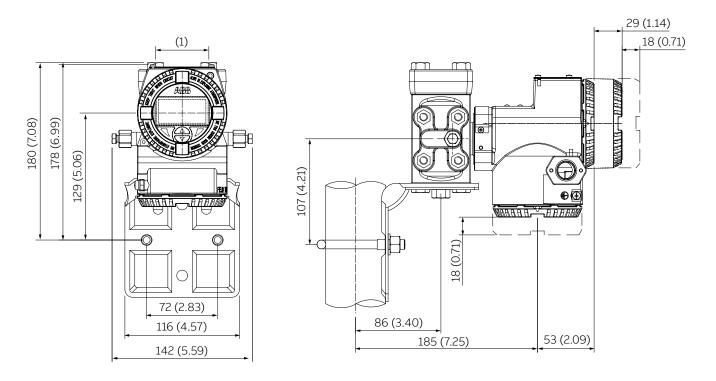
Figure 6: Barrel housing - Vertical flanges

Mounting dimensions

(not design data) - dimensions in mm (inch)

Transmitter with mounting bracket, for vertical or horizontal mounting on 60 mm (2 in.) pipe




Figure 7: Pipe mounting - Barrel housing

Note: Process connection and gasket groove comply with IEC 61518. Thread for attaching adapter flanges or other components (e.g., manifold) to process flange: 7/16-20 UNF.

^{1) 54 (2.13)} mm (in.) via 1/4 - 18 NPT process flanges

^{51 (2.01), 54 (2.13),} or 57 (2.24) mm (in) via 1/2 - 14 NPT adapter flanges.

Transmitter with DIN aluminum housing - horizontal flanges with mounting bracket for vertical or horizontal mounting on 60 mm (2 in.) pipe

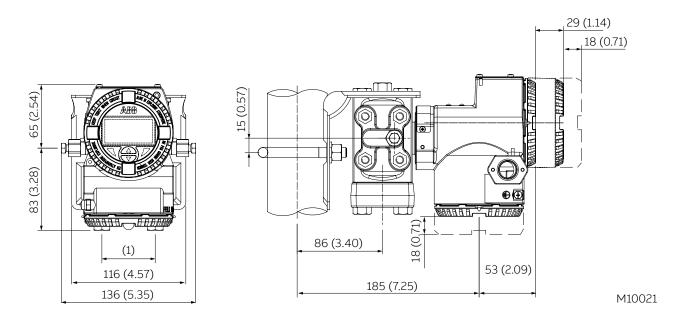


Figure 8: Pipe mounting - DIN housing

^{1) 54 (2.13)} mm (in.) via 1/4 - 18 NPT process flanges 51 (2.01), 54 (2.13), or 57 (2.24) mm (in) via 1/2 - 14 NPT adapter flanges. Note: Process connection and gasket groove comply with IEC 61518. Thread for attaching adapter flanges or other components (e.g., manifold) to process flange: 7/16 - 20 UNF.

Mounting dimensions

(not design data) - dimensions in mm (inch)

Transmitter with flat bracket, for vertical or horizontal mounting on 60 mm (2 in.) pipe

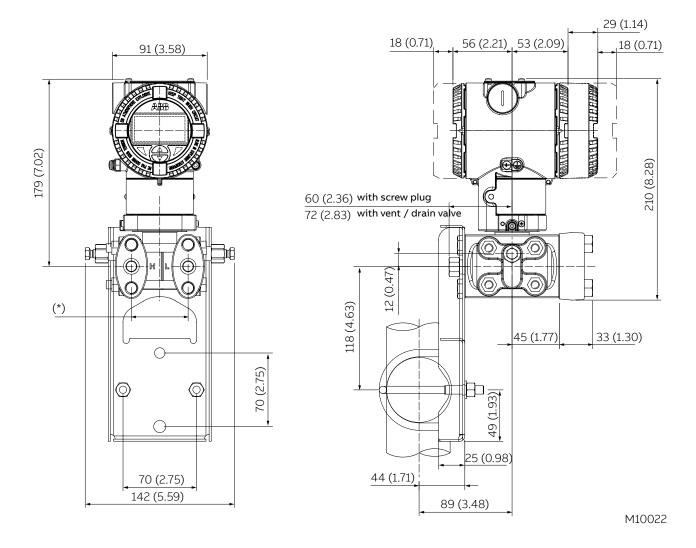


Figure 9: Flat bracket for pipe mounting - Barrel housing

M10137

Electrical connections

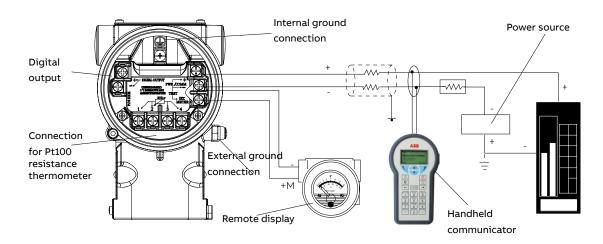


Figure 9: Electrical connections

The HART handheld terminal can be connected to any wiring termination point in the loop, provided there is a minimum resistance of 250 Ω between the handheld terminal and transmitter power supply. If this is less than 250 Ω , additional resistance needs to be incorporated in order to enable communication.

Ordering information

Basic ordering information model 266CSH Multivariable transmitter for mass flow and level.

Select one character or set of characters from each category and specify complete catalog number.

Refer to additional ordering information and specify one or more codes for each transmitter if additional options are required.

Base model - 1st to 6t	th characters			266CSH	X	X	X	X	X	X	
Multivariable transm	ltivariable transmitter for mass flow and level, base accuracy 0.075 % or Span Limits – 7th character										
Sensor Span Limits –	7th character								conti	nued	
0.05 and 1 kPa	0.5 and 10 mbar	0.2 and 4 in. H₂O	(Note: 1)		Α			(on nex	t page	e
0.2 and 6 kPa	2 and 60 mbar	0.8 and 24 in. H₂O			С						
0.4 and 40 kPa	4 and 400 mbar	1.6 and 160 in. H₂O			F						
2.5 and 250 kPa	25 and 2500 mbar	10 and 1000 in. H₂O			L						
20 and 2000 kPa	0.2 and 20 bar	2.9 and 290 psi			N						
Maximum Working Pro	essure – 8th character										
0 and 0.6 MPa	0 and 6 bar	0 and 87 psi	(only with	Sensor Span Limits code A)		1					
0 and 2 MPa	0 and 20 bar	0 and 290 psi				2					
0 and 10 MPa	0 and 100 bar	0 and 1450 psi	(not with S	ensor Span Limits code A)		3					
0 and 41 MPa	0 and 410 bar	0 and 5945 psi	(not with S	ensor Span Limits code A)		4					
Diaphragm Material /	Fill Fluid – 9th characte	r									
AISI 316L SST (1.443	5)	Silicone oil			NAC	Έ	S				
Hastelloy® C-276		Silicone oil			NAC	Έ	K				
Monel 400®		Silicone oil			NAC	Έ	М				
Monel 400® gold-plat	ted	Silicone oil			NAC	Έ	V				
Tantalum		Silicone oil			NAC	Έ	Т				
AISI 316L SST (1.443	5)	Inert fluid – Galden (Suit	able for oxyger	applications) (Note: 2)	NAC	Έ	Α				
Hastelloy® C-276		Inert fluid – Galden (Suit	able for oxyger	applications) (Note: 2)	NAC	Έ	F				
Monel 400®		Inert fluid – Galden (Suit	able for oxyger	applications) (Note: 2)	NAC	Έ	С				
Monel 400® gold-plat	ted	Inert fluid – Galden (Suit	able for oxyger	applications) (Note: 2)	NAC	Ε	Υ				
Tantalum		Inert fluid – Galden (Suit	able for oxyger	applications) (Note: 2)	NAC	Έ	D				
Process Flanges and A	Adapters Material / Con	nection – 10th character									
AISI 316L SST (1.440	4 / 1.4408)	1/4-18 NPT female direc	t	(horizontal connection)	NAC	E		Α			
AISI 316L SST (1.440	4 / 1.4408)	1/2-14 NPT female throu	ıgh adapter	(horizontal connection)	NAC	Έ		В			
AISI 316L SST (1.440	4 / 1.4408)	1/4-18 NPT female direc	t (DIN 19213)	(horizontal connection)	NAC	E		С			
Hastelloy® C-276		1/4-18 NPT female direc	t	(horizontal connection)	NAC	E		D			
Hastelloy® C-276		1/2-14 NPT female throu	ıgh adapter	(horizontal connection)	NAC	Ε		Е			
Monel 400®		1/4-18 NPT female direc	t	(horizontal connection)	NAC	Ε		G			
Monel 400®		1/2-14 NPT female throu	ıgh adapter	(horizontal connection)	NAC	Ε		Н			
Kynar (PVDF)		1/4-18 NPT female direc	t (MWP= 1 MPa	a/10 bar/ 145 psi) (insert o	on side	or fla	nge)	Р			
AISI 316L SST (1.440	4 / 1 4408)	1/4-18 NPT female direc	+	(vertical connection)	NAC	F	- '	Q			

			х	Х	Х
Bolts Material / Gaskets Material - 11th	character				
AISI 316L SST (NACE - non exposed to H	2S) / Viton (S	uitable for oxygen applications) (Note: 2)	3		
AISI 316L SST (NACE - non exposed to H	2S) / PTFE (M	ax. 25 MPa / 250 bar / 3625 psi)	4		
AISI 316L SST (NACE - non exposed to H	2S) / EPDM		5		
AISI 316L SST (NACE - non exposed to H	2S) / Perbuna	n	6		
AISI 316L SST (NACE - non exposed to H	2S) / Graphite	e	7		
AISI 316L SST (NACE - non exposed) / F	EP (only availa	ble with Kynar [PVDF] process connection)	Т		
Housing Material / Electrical Connection	– 12th chara	cter		_	
Aluminium alloy (Barrel type)	1/2-14	NPT		Α	
Aluminium alloy (Barrel type)	M20 x 1	.5		В	
AISI 316L SST (Barrel type)	1/2-14	NPT		S	
AISI 316L SST (Barrel type)	M20 x 1	.5		Т	
Aluminium alloy (DIN type)	M20 x 1	.5		J	
Output – 13th character					-
HART digital communication and 4 20) mA	(No additional options)			Н
HART digital communication and 4 20) mA	(Options requested by "Additional ordering code")			1

...Ordering information

...ADDITIONAL ORDERING INFORMATION for model 266CSH

Add one or more 2-digit code(s) after the basic ordering information to select all required options

				XX	X
Vent and drain valve Material ,	/ Position				
AISI 316L SST (1.4404)	On process axis	NACE		V1	
AISI 316L SST (1.4404)	On flanges side top	NACE		V2	
AISI 316L SST (1.4404)	On flanges side bottom	NACE		V3	
Hastelloy® C-276	On process axis	NACE		V4	
Hastelloy® C-276	On flanges side top	NACE		V5	
Hastelloy® C-276	On flanges side bottom	NACE		V6	
Monel 400®	On process axis	NACE		V7	
Monel 400®	On flanges side top	NACE		V8	
Monel 400®	On flanges side bottom	NACE		V9	
Explosion Protection Certifica	ation				
ATEX Intrinsic Safety Ex ia					Е
ATEX Explosion Proof Ex db			(Note: 3)		Е
ATEX Intrinsic Safety Ex ic					Е
FM approval (Canada) (Only a	vailable with 1/2-14 NPT or M20 electrical conn	ections)	(Note: 3)		Е
FM approval (USA) (Only avail	able with 1/2-14 NPT or M20 electrical connecti	ons)	(Note: 3)		Е
FM approvals (USA and Canad	da) Intrinsic Safety				E
FM approvals (USA and Canad	da) Explosion Proof		(Note: 3)		Е
FM approvals (USA and Canad	da) Nonincendive				E
Combined ATEX, IECEx and F	M approvals (USA and Canada)		(Note: 3)		Е
Combined ATEX Ex ia, Ex db a	and Ex ic		(Note: 3)		Е
IECEx Intrinsic Safety Ex ia					E
IECEx Explosion Proof Ex db			(Note: 3)		E
IECEx Intrinsic Safety Ex ic					E
Combined IEC Approval Ex ia	and Ex db		(Note: 3)		Е
Combined IEC Approval Ex ia, Ex db and Ex ic		(Note: 3)		E	
NEPSI Intrinsic Safety Ex ia					Е
NEPSI Explosion Proof Ex d			(Note: 3)		Е
NEPSI Intrinsic Safety Ex ic					Е
Combined NEPSI Ex ia and Ex	d d		(Note: 3)		Е
Combined NEPSI Ex ia, Ex d a	nd Ex ic		(Note: 3)		Е

	XX	XX	XX	XX	XX	ХX	XX
Other Explosion Protection Certifications							
TR CU EAC Ex ia Russia (incl. GOST Metrologic Approval)	W1						
TR CU EAC Ex d Russia (incl. GOST Metrologic Approval)	W2						
TR CU EAC Ex ia Kazakhstan (incl. GOST Metrologic Approval)	W3						
TR CU EAC Ex d Kazakhstan (incl. GOST Metrologic Approval)	W4						
TR CU EAC Ex ia Belarus (incl. GOST Metrologic Approval)	WF						
TR CU EAC Ex d Belarus (incl. GOST Metrologic Approval)	WG	i					
ntegral LCD							
With integral LCD display		L1					
TTG (Through The Glass) integral digital LCD display		L5					
Mounting Bracket Shape / Material							
For pipe mounting / Carbon steel (Not suitable for AISI housing)			В1				
For pipe mounting / AISI 316 SST (1.4401) (Not suitable for AISI housing)			B2				
For wall mounting / Carbon steel (not suitable for AISI housing)			В3				
For wall mounting / AISI 316 SST (1.4401) (not suitable for AISI housing)			В4				
Flat type bracket / AISI 316 SST (1.4401) (Not suitable for AISI housing)			B5				
Operating Instruction Language							
German				M1			
English				M5			
Label and Tag Language							
German					T1		
Italian					T2		
Spanish					T3		
Franch					T4		
Additional Tag Plate							
Supplemental wired-on stainless steel plate (4 lines, 32 characters each)						11	
Laser printing of tag on stainless steel plate						12	
Stainless steel tag, certifikation and wire-on plates						13	
Configuration							
Standard – Pressure = inH2O/ psi at 68 °F; Temperature = deg. F							N
Standard – Pressure = inH2O/ psi at 39.2 °F; Temperature = deg. F							N
Standard – Pressure = inH2O/ psi at 20 °C; Temperature = deg. C							N
Standard – Pressure = inH2O/ psi at 4 °C; Temperature = deg. C							N
Custom							N

...Ordering information

...ADDITIONAL ORDERING INFORMATION for model 266CSH

Add one or more 2-digit code(s) after the basic ordering information to select all required options

	xx	XX	XX	XX	XX	2
Preparation Procedure						
Oxygen service cleaning, Pmax = 12 MPa (120 bar, 1740 psi) or maximum working pressure (lower value),						
Tmax = $60 ^{\circ}\text{C}$ / $140 ^{\circ}\text{F}$ (only available with inert fill and Viton gasket)	P1					
Hydrogen service preparation (Fluid film)	P2					
Certificates		_				
Inspection certificate 3.1 acc. EN 10204 of calibration		C1				
Inspection certificate 3.1 acc. EN 10204 of the cleanliness stage		C 3				
Inspection certificate 3.1 acc. EN 10204 of helium leakage test of the sensor module		C4				
Inspection certificate 3.1 acc. EN 10204 of pressure test		C5				
Declaration of compliance with the order 2.1 acc. EN 10204 for instrument design		C 6				
Printed record of configured data of transmitter		CG				
PMI test on wetted parts		СТ				
Approvals			_			
GOST Russia Metrologic Approval			Y1			
GOST Kazakhstan Metrologic Approval			Y2			
GOST Ukraine Metrologic Approval			Y3			
GOST Belarus Metrologic Approval			Y4			
Det Norske Veritas naval approval			YA			
Material Traceability						
Certificate of compliance with the order 2.1 acc. EN 10204 for process wetted parts				H1		
Inspection certificate 3.1 acc. EN 10204 of pressure-bearing and process wetted parts						
with analysis certificates as material (Note: 4)				Н3		
Material certificate 2.2 acc. EN 10204 for the pressure bearing and process wetted parts				H4		
Connector					,	
With cable gland M20 x 1.5					U8	
Housing Accessories						1
Integral mount manifold (price adder just for assembling, not for manifold)						,

Note 1: Not available with Diaphragm Material code M, V, T, C, Y, D

Note 2: Suitable for Oxygen service

Note 3: Not available with Housing Material / Electrical Connection code J

Note 4: Minor Parts with Factory Certificate acc. to EN 10204

Standard delivery scope (changes possible with additional ordering code)

- Adapters supplied loose
- Sealing plugs for horizontal connection flanges on the process axis; not for PVDF Kynar insert or for vertical connection flanges (no vent / drain valves)
- For standard applications (without explosion protection)
- No display, no mounting bracket, no surge protector
- Multilanguage short operating instruction and English labeling
- · Configuration with kPa and °C units
- No test, inspection, or material certificates

Ordering information

Basic ordering information model 266CST Multivariable transmitter for mass flow and level

Select one character or set of characters from each category and specify complete catalog number. Refer to additional ordering information and specify one or more codes for each transmitter if additional options are required d.

Base model - 1st to 61	th characters			266CST	X	X	X	Х	Х	Х	2
Multivariable transm	nitter for mass flow and	level base accuracy 0.04 %									
Sensor Span Limits –	7th character								conti	nued	
0.05 and 1 kPa	0.5 and 10 mbar	0.2 and 4 in. H₂O	(Note: 1)		Α				n nex	t page	е
0.2 and 6 kPa	2 and 60 mbar	0.8 and 24 in. H₂O			С						
0.4 and 40 kPa	4 and 400 mbar	1.6 and 160 in. H₂O			F						
2.5 and 250 kPa	25 and 2500 mbar	10 and 1000 in. H₂O			L						
20 and 2000 kPa	0.2 and 20 bar	2.9 and 290 psi			N						
Maximum Working Pr	essure – 8th character										
0 and 0.6 MPa	0 and 6 bar	0 and 87 psi (only with Sens	or Span Limits code A)		1					
0 and 2 MPa	0 and 20 bar	0 and 290 psi				2					
0 and 10 MPa	0 and 100 bar	0 and 1450 psi (not with Senso	or Span Limits code A)		3					
0 and 41 MPa	0 and 410 bar	0 and 5945 psi (not with Senso	or Span Limits code A)		4					
Diaphragm Material /	Fill Fluid – 9th characte	r									
AISI 316L SST (1.443	5)	Silicone oil			NAC	Έ	S				
Hastelloy® C-276		Silicone oil			NAC	Έ	K				
Monel 400®		Silicone oil			NAC	E	М				
Monel 400® gold-pla	ted	Silicone oil			NAC	Έ	V				
Tantalum		Silicone oil			NAC	Έ	Т				
AISI 316L SST (1.443	5)	Inert fluid – Galden (Suitable	for oxygen app	olications) (Note: 2)	NAC	Έ	Α				
Hastelloy® C-276		Inert fluid – Galden (Suitable	for oxygen app	olications) (Note: 2)	NAC	Έ	F				
Monel 400®		Inert fluid – Galden (Suitable	for oxygen app	olications) (Note: 2)	NAC	Έ	С				
Monel 400® gold-plat	ted	Inert fluid – Galden (Suitable	for oxygen app	olications) (Note: 2)	NAC	Έ	Υ				
Tantalum		Inert fluid – Galden (Suitable	for oxygen app	olications) (Note: 2)	NAC	Έ	D				
Process Flanges and A	Adapters Material / Con	nection – 10th character									
AISI 316L SST (1.440	4 / 1.4408)	1/4-18 NPT female direct	(ho	rizontal connection)	NAC	Έ		Α			
AISI 316L SST (1.440	4 / 1.4408)	1/2-14 NPT female through a	adapter (ho	rizontal connection)	NAC	Έ		В			
AISI 316L SST (1.440	4 / 1.4408)	1/4-18 NPT female direct (DI	N 19213) (ho	rizontal connection)	NAC	Έ		С			
Hastelloy® C-276		1/4-18 NPT female direct	(ho	rizontal connection)	NAC	Έ		D			
Hastelloy® C-276		1/2-14 NPT female through a	adapter (ho	rizontal connection)	NAC	Έ		Е			
Monel 400®		1/4-18 NPT female direct	(ho	rizontal connection)	NAC	Έ		G			
Monel 400®		1/2-14 NPT female through a	adapter (ho	rizontal connection)	NAC	Έ		Н			
Kynar (PVDF)		1/4-18 NPT female direct (M)	WP= 1 MPa/10	bar/ 145 psi) (insert o	on side	or fla	nge)	Р			
AISI 316L SST (1.440	4 / 1 4408)	1/4-18 NPT female direct	(ve	rtical connection)	NAC	F		Q			

•

...Ordering information

$... Basic\ ordering\ information\ model\ 266 CST\ Multivariable\ transmitter\ for\ mass\ flow\ and\ level$

Select one character or set of characters from each category and specify complete catalog number. Refer to additional ordering information and specify one or more codes for each transmitter if additional options are required.

		-	х	Х	
Bolts Material / Gaskets Material – 11	th character		<u> </u>		
AISI 316L SST (NACE - non exposed t	o H2S) / Viton (Sui	table for oxygen applications) (Note: 1)	3		
AISI 316L SST (NACE - non exposed t	o H2S) / PTFE (Max	x. 25 MPa / 250 bar / 3625 psi)	4		
AISI 316L SST (NACE - non exposed t	H2S) / EPDM		5		
AISI 316L SST (NACE - non exposed t	o H2S) / Perbunan		6		
AISI 316L SST (NACE - non exposed t	o H2S) / Graphite		7		
AISI 316L SST (NACE - non exposed)	FEP (only availab	le with Kynar [PVDF] process connection)	Т		
Housing Material / Electrical Connect	ion – 12th charact	er			
Aluminium alloy (Barrel type)	1/2-14 N	PT		Α	
Aluminium alloy (Barrel type)	M20 x 1.5			В	
AISI 316L SST (Barrel type)	1/2-14 N	PT		s	
AISI 316L SST (Barrel type)	M20 x 1.5			Т	
Aluminium alloy (DIN type)	M20 x 1.5			J	
Output – 13th character					-
HART digital communication and 4	. 20 mA	(No additional options)			Н
HART digital communication and 4	. 20 mA	(Options requested by "Additional ordering code")			1

ADDITIONAL ORDERING INFORMATION for model 266CST

Add one or more 2-digit code(s) after the basic ordering information to select all required options

				XX	X
Vent and drain valve Material	/ Position				
AISI 316L SST (1.4404)	On process axis	NACE		V1	
AISI 316L SST (1.4404)	On flanges side top	NACE		V2	
AISI 316L SST (1.4404)	On flanges side bottom	NACE		V3	
Hastelloy® C-276	On process axis	NACE		V4	
Hastelloy® C-276	On flanges side top	NACE		V5	
Hastelloy® C-276	On flanges side bottom	NACE		V6	
Monel 400®	On process axis	NACE		V7	
Monel 400®	On flanges side top	NACE		V8	
Monel 400®	On flanges side bottom	NACE		V9	
Explosion Protection Certific	ation				
ATEX Intrinsic Safety Ex ia					E
ATEX Explosion Proof Ex db			(Note: 3)		E
ATEX Intrinsic Safety Ex ic					E
FM approval (Canada) (Only a	available with 1/2-14 NPT or M20 electrical connec	ctions)	(Note: 3)		E
FM approval (USA) (Only avai	lable with 1/2-14 NPT or M20 electrical connection	ns)	(Note: 3)		E
FM approvals (USA and Cana	da) Intrinsic Safety				E
FM approvals (USA and Cana	da) Explosion Proof		(Note: 3)		E
FM approvals (USA and Cana	da) Nonincendive				E
Combined ATEX, IECEx and F	M approvals (USA and Canada)		(Note: 3)		E
Combined ATEX Ex ia, Ex db	and Ex ic		(Note: 3)		Е
IECEx Intrinsic Safety Ex ia					E
IECEx Explosion Proof Ex db			(Note: 3)		E
IECEx Intrinsic Safety Ex ic					E
Combined IEC Approval Ex ia	and Ex db		(Note: 3)		Е
Combined IEC Approval Ex ia	, Ex db and Ex ic		(Note: 3)		-
NEPSI Intrinsic Safety Ex ia					E
NEPSI Explosion Proof Ex d			(Note: 3)		E
NEPSI Intrinsic Safety Ex ic					E
Combined NEPSI Ex ia and Ex	« d		(Note: 3)		ı
Combined NEPSI Ex ia, Ex d a	and Ex ic		(Note: 3)		Е

...Ordering information

...ADDITIONAL ORDERING INFORMATION for model 266CST

 \dots Add one or more 2-digit code(s) after the basic ordering information to select all required options

	XX	XX	XX	XX	XX	XX	X
Other Explosion Protection Certifications							
TR CU EAC Ex ia Russia (incl. GOST Metrologic Approval)	W1						
TR CU EAC Ex d Russia (incl. GOST Metrologic Approval)	W2						
TR CU EAC Ex ia Kazakhstan (incl. GOST Metrologic Approval)	W3						
TR CU EAC Ex d Kazakhstan (incl. GOST Metrologic Approval)	W4						
TR CU EAC Ex ia Belarus (incl. GOST Metrologic Approval)	WF						
TR CU EAC Ex d Belarus (incl. GOST Metrologic Approval)	WG						
Integral LCD							
With integral LCD display		L1					
TTG (Through The Glass) integral digital LCD display		L5					
Mounting Bracket Shape / Material			_				
For pipe mounting / Carbon steel (Not suitable for AISI housing)			В1				
For pipe mounting / AISI 316 SST (1.4401) (Not suitable for AISI housing)			B2				
For wall mounting / Carbon steel (not suitable for AISI housing)			В3				
For wall mounting / AISI 316 SST (1.4401) (not suitable for AISI housing)			В4				
Flat type bracket / AISI 316 SST (1.4401) (Not suitable for AISI housing)			В5				
Operating Instruction Language				_			
German				M1			
English				M5			
abel and Tag Language					_		
German					T1		
Italian					T2		
Spanish					Т3		
Franch					T4		
Additional Tag Plate							
Supplemental wired-on stainless steel plate (4 lines, 32 characters each)						11	
Laser printing of tag on stainless steel plate						12	
Stainless steel tag, certifikation and wire-on plates						13	
Configuration							
Standard – Pressure = inH2O/ psi at 68 °F; Temperature = deg. F							1
Standard – Pressure = inH2O/ psi at 39.2 °F; Temperature = deg. F							1
Standard – Pressure = inH2O/ psi at 20 °C; Temperature = deg. C							1
Standard – Pressure = inH2O/ psi at 4 °C; Temperature = deg. C							1
Custom							١

	XX	XX	XX	XX	XX	
Preparation Procedure						
Oxygen service cleaning, Pmax = 12 MPa (120 bar, 1740 psi) or maximum working pressure (lower value),						
Tmax = $60 ^{\circ}\text{C} / 140 ^{\circ}\text{F}$ (only available with inert fill and Viton gasket)	P1					
Hydrogen service preparation (Fluid film)	P2					
Certificates						
Inspection certificate 3.1 acc. EN 10204 of calibration		C1				
Inspection certificate 3.1 acc. EN 10204 of the cleanliness stage		C3				
Inspection certificate 3.1 acc. EN 10204 of helium leakage test of the sensor module		C4				
Inspection certificate 3.1 acc. EN 10204 of pressure test		C5				
Declaration of compliance with the order 2.1 acc. EN 10204 for instrument design		C6				
Printed record of configured data of transmitter		CG				
PMI test on wetted parts		СТ				
PMI test on wetted parts		СТ				
Approvals						
GOST Russia Metrologic Approval			Y1			
GOST Kazakhstan Metrologic Approval			Y2			
GOST Ukraine Metrologic Approval			Y3			
GOST Belarus Metrologic Approval			Y4			
Det Norske Veritas naval approval			YA			
Material Traceability						
Certificate of compliance with the order 2.1 acc. EN 10204 for process wetted parts				H1		
Inspection certificate 3.1 acc. EN 10204 of pressure-bearing and process wetted parts						
with analysis certificates as material (Note: 4)				Н3		
Material certificate 2.2 acc. EN 10204 for the pressure bearing and process wetted parts				H4		
Connector					_	
With cable gland M20 x 1.5					U8	
Seal Type High / Low Pressure Side						
For ordering information please refer to seal data sheet DS/S26						

Note 1: Not available with Diaphragm Material code M, V, T, C, Y, D

Note 2: Suitable for Oxygen service

Note 3: Not available with Housing Material / Electrical Connection code J

Note 4: Minor Parts with Factory Certificate acc. to EN 10204 $\,$

Standard delivery scope (changes possible with additional ordering code)

- Adapters supplied loose
- Sealing plugs for horizontal connection flanges on the process axis; not for PVDF Kynar insert or for vertical connection flanges (no vent / drain valves)
- For standard applications (without explosion protection)
- No display, no mounting bracket, no surge protector
- Multilanguage short operating instruction and English labeling
- Configuration with kPa and °C units
- No test, inspection, or material certificates

Ordering information

Basic ordering information model 266JSH Multivariable transmitter, for differential pressure, absolute pressure and temperature measurement.

Select one character or set of characters from each category and specify complete catalog number.

Refer to additional ordering information and specify one or more codes for each transmitter if additional options are required.

Base model - 1st to 6th	h characters		266JSH	хх	X	X	Х	Х	X
Multivariable transmi	itter, for differential pr	essure, absolute pressure and	temperature						
measurement, base a	accuracy 0.075 %								
Sensor Span Limits – 7	th character	,					conti	nued	
0.05 and 1 kPa	0.5 and 10 mbar	0.2 and 4 in. H₂O (Note: 1)	Α		,	on nex	t pag	е
0.2 and 6 kPa	2 and 60 mbar	0.8 and 24 in. H₂O		С					
0.4 and 40 kPa	4 and 400 mbar	1.6 and 160 in. H₂O		F					
2.5 and 250 kPa	25 and 2500 mbar	10 and 1000 in. H ₂ O		L					
20 and 2000 kPa	0.2 and 20 bar	2.9 and 290 psi		N					
100 and 10000 kPa	1 and 100 bar	14.5 and 1450 psi		R					
Maximum Working Pre	ssure – 8th character								
0 and 0.6 MPa	0 and 6 bar	0 and 87 psi (c	only with Sensor Span Limits code A)	1					
0 and 2 MPa	0 and 20 bar	0 and 290 psi		2					
0 and 10 MPa	0 and 100 bar	0 and 1450 psi (r	ot with Sensor Span Limits code A)	3					
0 and 41 MPa	0 and 410 bar	0 and 5945 psi (r	ot with Sensor Span Limits code A)	4					
Diaphragm Material / I	Fill Fluid – 9th characte	er							
AISI 316L SST (1.4435	5)	Silicone oil		NACE	S				
Hastelloy® C-276		Silicone oil		NACE	K				
Monel 400®		Silicone oil		NACE	М				
Monel 400® gold-plate	ed	Silicone oil		NACE	٧				
Tantalum		Silicone oil		NACE	Т				
AISI 316L SST (1.4435	5)	Inert fluid – Galden (Suitable f	or oxygen applications) (Note: 2)	NACE	Α				
Hastelloy® C-276		Inert fluid – Galden (Suitable f	or oxygen applications) (Note: 2)	NACE	F				
Monel 400®		Inert fluid – Galden (Suitable f	or oxygen applications) (Note: 2)	NACE	С				
Monel 400® gold-plate	ed	Inert fluid – Galden (Suitable f	or oxygen applications) (Note: 2)	NACE	Υ				
Tantalum		Inert fluid – Galden (Suitable f	or oxygen applications) (Note: 2)	NACE	D				
Process Flanges and A	dapters Material / Con	nection – 10th character							
AISI 316L SST (1.4404	/ 1.4408)	1/4-18 NPT female direct	(horizontal connection)	NACE		Α			
AISI 316L SST (1.4404	/ 1.4408)	1/2-14 NPT female through a	dapter (horizontal connection)	NACE		В			
AISI 316L SST (1.4404	/ 1.4408)	1/4-18 NPT female direct (DIN	19213) (horizontal connection)	NACE		С			
Hastelloy® C-276		1/4-18 NPT female direct	(horizontal connection)	NACE		D			
Hastelloy® C-276		1/2-14 NPT female through a	dapter (horizontal connection)	NACE		Ε			
Monel 400®		1/4-18 NPT female direct	(horizontal connection)	NACE		G			
Monel 400®		1/2-14 NPT female through a	•	NACE		Н			
Kynar (PVDF)			/P= 1 MPa/10 bar/ 145 psi) (insert	on side or	flange)	Р			
AISI 316L SST (1.4404	L / 1 4408)	1/4-18 NPT female direct	(vertical connection)	NACE	,	Q			

			х	X	
Bolts Material / Gaskets Material – 11	th character		<u> </u>		
AISI 316L SST (NACE - non exposed t	o H2S) / Viton	(Suitable for oxygen applications) (Note: 2)	3		
AISI 316L SST (NACE - non exposed t	o H2S) / PTFE	(Max. 25 MPa / 250 bar / 3625 psi)	4		
AISI 316L SST (NACE - non exposed t	o H2S) / EPDM		5		
AISI 316L SST (NACE - non exposed t	o H2S) / Perbu	nan	6		
AISI 316L SST (NACE - non exposed t	o H2S) / Grapł	ite	7		
AISI 316L SST (NACE - non exposed)	/ FEP (only ava	ilable with Kynar [PVDF] process connection)	Т		
Housing Material / Electrical Connect	ion – 12th cha	racter		_	
Aluminium alloy (Barrel type)	1/2-1	4 NPT		Α	
Aluminium alloy (Barrel type)	M20	1.5		В	
AISI 316L SST (Barrel type)	1/2-1	4 NPT		S	
AISI 316L SST (Barrel type)	M20	1.5		Т	
Aluminium alloy (DIN type)	M20	1.5		J	
Output – 13th character					
HART digital communication and 4	. 20 mA	(No additional options)			Н
HART digital communication and 4	. 20 mA	(Options requested by "Additional ordering code")			1

...Ordering information

...ADDITIONAL ORDERING INFORMATION for model 266JSH

Add one or more 2-digit code(s) after the basic ordering information to select all required options

				XX	X
Vent and drain valve Material	/ Position				
AISI 316L SST (1.4404)	On process axis	NACE		V1	
AISI 316L SST (1.4404)	On flanges side top	NACE		V2	
AISI 316L SST (1.4404)	On flanges side bottom	NACE		V3	
Hastelloy® C-276	On process axis	NACE		V4	
Hastelloy® C-276	On flanges side top	NACE		V5	
Hastelloy® C-276	On flanges side bottom	NACE		V6	
Monel 400®	On process axis	NACE		V7	
Monel 400®	On flanges side top	NACE		V8	
Monel 400®	On flanges side bottom	NACE		V9	
Explosion Protection Certifica	ation				
ATEX Intrinsic Safety Ex ia					E
ATEX Explosion Proof Ex db			(Note: 3)		ı
ATEX Intrinsic Safety Ex ic					-
FM approval (Canada) (Only a	vailable with 1/2-14 NPT or M20 electrical conn	ections)	(Note: 3)		
FM approval (USA) (Only avail	able with 1/2-14 NPT or M20 electrical connecti	ons)	(Note: 3)		
FM approvals (USA and Canad	da) Intrinsic Safety				ı
FM approvals (USA and Canad	da) Explosion Proof		(Note: 3)		1
FM approvals (USA and Canad	da) Nonincendive				ı
Combined ATEX, IECEx and F	M approvals (USA and Canada)		(Note: 3)		E
Combined ATEX Ex ia, Ex db a	and Ex ic		(Note: 3)		E
IECEx Intrinsic Safety Ex ia					E
IECEx Explosion Proof Ex db			(Note: 3)		E
IECEx Intrinsic Safety Ex ic					E
Combined IEC Approval Ex ia	and Ex db		(Note: 3)		E
Combined IEC Approval Ex ia,	, Ex db and Ex ic		(Note: 3)		
NEPSI Intrinsic Safety Ex ia					ı
NEPSI Explosion Proof Ex d			(Note: 3)		1
NEPSI Intrinsic Safety Ex ic					
Combined NEPSI Ex ia and Ex	d d		(Note: 3)		ı
Combined NEPSI Ex ia, Ex d a	nd Ex ic		(Note: 3)		Е

	XX	ХX	ХX	ХX	ХX	ХX	XX
Other Explosion Protection Certifications							
TR CU EAC Ex ia Russia (incl. GOST Metrologic Approval)	W1						
TR CU EAC Ex d Russia (incl. GOST Metrologic Approval)	W2						
TR CU EAC Ex ia Kazakhstan (incl. GOST Metrologic Approval)	W3						
TR CU EAC Ex d Kazakhstan (incl. GOST Metrologic Approval)	W4						
TR CU EAC Ex ia Belarus (incl. GOST Metrologic Approval)	WF						
TR CU EAC Ex d Belarus (incl. GOST Metrologic Approval)	WG						
Integral LCD							
With integral LCD display		L1					
TTG (Through The Glass) integral digital LCD display		L5					
Mounting Bracket Shape / Material							
For pipe mounting / Carbon steel (Not suitable for AISI housing)			В1				
For pipe mounting / AISI 316 SST (1.4401) (Not suitable for AISI housing)			B2				
For wall mounting / Carbon steel (not suitable for AISI housing)			В3				
For wall mounting / AISI 316 SST (1.4401) (not suitable for AISI housing)			В4				
Flat type bracket / AISI 316 SST (1.4401) (Not suitable for AISI housing)			B 5				
Operating Instruction Language							
German				M1			
English				M5			
Label and Tag Language							
German					T1		
Italian					T2		
Spanish					Т3		
Franch					T4		
Additional Tag Plate							
Supplemental wired-on stainless steel plate (4 lines, 32 characters each)						11	
Laser printing of tag on stainless steel plate						12	
Stainless steel tag, certifikation and wire-on plates						13	
Configuration							
Standard – Pressure = inH2O/ psi at 68 °F; Temperature = deg. F							N2
Standard – Pressure = inH2O/ psi at 39.2 °F; Temperature = deg. F							N3
Standard – Pressure = inH2O/ psi at 20 °C; Temperature = deg. C							N4
Standard – Pressure = inH2O/ psi at 4 °C; Temperature = deg. C Custom							N5 N6

...Ordering information

...ADDITIONAL ORDERING INFORMATION for model 266JSH

Add one or more 2-digit code(s) after the basic ordering information to select all required options

	XX	XX	XX	XX	XX	Х
Preparation Procedure						
Oxygen service cleaning, Pmax = 12 MPa (120 bar, 1740 psi) or maximum working pressure (lower value),						
Tmax = $60 ^{\circ}\text{C} / 140 ^{\circ}\text{F}$ (only available with inert fill and Viton gasket)	P1					
Hydrogen service preparation (Fluid film)	P2					
Certificates		_				
Inspection certificate 3.1 acc. EN 10204 of calibration		C1				
Inspection certificate 3.1 acc. EN 10204 of the cleanliness stage		C 3				
Inspection certificate 3.1 acc. EN 10204 of helium leakage test of the sensor module		C4				
Inspection certificate 3.1 acc. EN 10204 of pressure test		C 5				
Declaration of compliance with the order 2.1 acc. EN 10204 for instrument design		C6				
Printed record of configured data of transmitter		CG				
PMI test on wetted parts		СТ				
Approvals			_			
GOST Russia Metrologic Approval			Y1			
GOST Kazakhstan Metrologic Approval			Y2			
GOST Ukraine Metrologic Approval			Y3			
GOST Belarus Metrologic Approval			Y4			
Det Norske Veritas naval approval			YA			
Material Traceability				_		
Certificate of compliance with the order 2.1 acc. EN 10204 for process wetted parts				H1		
Inspection certificate 3.1 acc. EN 10204 of pressure-bearing and process wetted parts						
with analysis certificates as material (Note: 4)				Н3		
Material certificate 2.2 acc. EN 10204 for the pressure bearing and process wetted parts				H4		
Connector					,	
With cable gland M20 x 1.5					U8	
Housing Accessories						1
Integral mount manifold (price adder just for assembling, not for manifold)						A

Note 1: Not available with Diaphragm Material code M, V, T, C, Y, D

Note 2: Suitable for Oxygen service

Note 3: Not available with Housing Material / Electrical Connection code J

Note 4: Minor Parts with Factory Certificate acc. to EN 10204

Standard delivery scope (changes possible with additional ordering code)

- Adapters supplied loose
- Sealing plugs for horizontal connection flanges on the process axis; not for PVDF Kynar insert or for vertical connection flanges (no vent / drain valves)
- For standard applications (without explosion protection)
- No display, no mounting bracket, no surge protector
- Multilanguage short operating instruction and English labeling
- · Configuration with kPa and °C units
- · No test, inspection, or material certificates

_ . .

Ordering information

Basic ordering information model 266JST Multivariable transmitter, for differential pressure, absolute pressure and temperature measurement

Select one character or set of characters from each category and specify complete catalog number.

Refer to additional ordering information and specify one or more codes for each transmitter if additional options are required.

Base model - 1st to	6th characters			266JST	х	Х	Х	х	х	Х	Х
Multivariable trans	mitter, for differential	pressure, absolute pressure and	d								
measurement, base	e accuracy 0.04 %										
Sensor Span Limits -	- 7th character				•				conti	nued	
0.6 and 6 kPa	6 and 60 mbar	2.41 and 24 in. H₂O			С				on nex	t page	е
0.67 and 40 kPa	6.7 and 400 mbar	2.67 and 160 in. H ₂ O			F						
4.17 and 250 kPa	41.7 and 2500 mbar	16.7 and 1000 in. H₂O			L						
33.3 and 2000 kPa	0.333 and 20 bar	4.83 and 290 psi			N						
Maximum Working P	ressure – 8th characte	r									
0 and 2 MPa	0 and 20 bar	0 and 290 psi				2					
0 and 10 MPa	0 and 100 bar	0 and 1450 psi (no	ot with Sensor Span Lin	nits code A)		3					
0 and 41 MPa	0 and 410 bar	0 and 5945 psi (no	ot with Sensor Span Lin	nits code A)		4					
Diaphragm Material	/ Fill Fluid – 9th charac	ter									
AISI 316L SST (1.44	35)	Silicone oil			NA	CE	S				
Hastelloy® C-276		Silicone oil			NA	CE	K				
Monel 400®		Silicone oil			NA	CE	М				
AISI 316 L ss gold p	lated	Silicone oil			NA	CE	V				
Tantalum		Silicone oil			NA	CE	Т				
AISI 316L SST (1.44	35)	Inert fluid – Galden (Suitable fo	or oxygen applications)	(Note: 1)	NA	CE	Α				
Hastelloy® C-276		Inert fluid – Galden (Suitable fo	or oxygen applications)	(Note: 1)	NA	CE	F				
Monel 400® gold-pl	ated	Inert fluid – Galden (Suitable fo	or oxygen applications)	(Note: 1)	NA	CE	С				
AISI 316 L ss gold p	lated	Inert fluid – Galden (Suitable fo	or oxygen applications)	(Note: 1)	NA	CE	Υ				
Tantalum		Inert fluid – Galden (Suitable fo	or oxygen applications)	(Note: 1)	NA	CE	D				
Diaphragm seal		Silicone oil (Seal to be quoted	separately)				R				
Diaphragm seal		Inert fluid – Galden (Seal to be	quoted separately)				2				
Process Flanges and	Adapters Material / Co	onnection – 10th character						1			
AISI 316L SST (1.44	04 / 1.4408)	1/4-18 NPT female direct	(horizontal c	onnection)	NA	CE		Α			
AISI 316L SST (1.44	04 / 1.4408)	1/2-14 NPT female through ad	lapter (horizontal c	onnection)	NA	CE		В			
AISI 316L SST (1.44	04 / 1.4408)	1/4-18 NPT female direct (DIN	19213) (horizontal c	onnection)	NA	CE		С			
Hastelloy® C-276		1/4-18 NPT female direct	(horizontal c	onnection)	NA	CE		D			
Hastelloy® C-276		1/2-14 NPT female through ad	lapter (horizontal c	onnection)	NA	CE		Е			
Monel 400®		1/4-18 NPT female direct	(horizontal c	onnection)	NA	CE		G			
Monel 400®		1/2-14 NPT female through ad	lapter (horizontal c	onnection)	NA	CE		Н			
AISI 316L SST (1.44	04 / 1.4408)	For two seals construction			NA	CE		R			

...Ordering information

...Basic ordering information model 266JST Multivariable transmitter with remote seal(s), for mass flow and level Select one character or set of characters from each category and specify complete catalog number.

Refer to additional ordering information and specify one or more codes for each transmitter if additional options are required.

			х	Х	
Bolts Material / Gaskets Material – 11	th character		<u> </u>		
AISI 316L SST (NACE - non exposed t	o H2S) / Vitor	(Suitable for oxygen applications) (Note: 1)	3		
AISI 316L SST (NACE - non exposed t	o H2S) / PTFE	(Max. 25 MPa / 250 bar / 3625 psi)	4		
AISI 316L SST (NACE - non exposed t	o H2S) / EPDN	1	5		
AISI 316L SST (NACE - non exposed t	o H2S) / Perb	ınan	6		
AISI 316L SST (NACE - non exposed t	o H2S) / Grap	nite	7		
AISI 316L SST (NACE - non exposed t	o H2S) / With	out gaskets (For two seals construction)	R		
Housing Material / Electrical Connect	ion – 12th ch	racter		_	
Aluminium alloy (Barrel type)	1/2-	4 NPT		Α	
Aluminium alloy (Barrel type)	M20	¢ 1.5		В	
AISI 316L SST (Barrel type)	1/2-	.4 NPT		S	
AISI 316L SST (Barrel type)	M20	× 1.5		Т	
Aluminium alloy (DIN type)	M20	x 1.5		J	
Output – 13th character					-
HART digital communication and 4	. 20 mA	(No additional options)			Н
HART digital communication and 4	. 20 mA	(Options requested by "Additional ordering code")			1

ADDITIONAL ORDERING INFORMATION for model 266JST

Add one or more 2-digit code(s) after the basic ordering information to select all required options

				ХX	хх
Vent and drain valve Material	/ Position	,			
AISI 316L SST (1.4404)	On process axis	NACE		V1	
AISI 316L SST (1.4404)	On flanges side top	NACE		V2	
AISI 316L SST (1.4404)	On flanges side bottom	NACE		V3	
Hastelloy® C-276	On process axis	NACE		V4	
Hastelloy® C-276	On flanges side top	NACE		V5	
Hastelloy® C-276	On flanges side bottom	NACE		V6	
Monel 400®	On process axis	NACE		V7	
Monel 400®	On flanges side top	NACE		V8	
Monel 400®	On flanges side bottom	NACE		V9	
Explosion Protection Certific	ation				
ATEX Intrinsic Safety Ex ia					E1
ATEX Explosion Proof Ex db			(Note: 2)		E2
ATEX Intrinsic Safety Ex ic					E3
FM approval (Canada) (Only	available with 1/2-14 NPT or M20 electrical conr	nections)	(Note: 2)		E4
FM approval (USA) (Only avai	lable with 1/2-14 NPT or M20 electrical connect	cions)	(Note: 2)		E6
FM approvals (USA and Cana	da) Intrinsic Safety				EΑ
FM approvals (USA and Cana	da) Explosion Proof		(Note: 2)		ЕВ
FM approvals (USA and Cana	da) Nonincendive				EC
Combined ATEX, IECEx and F	M approvals (USA and Canada)		(Note: 2)		EN
Combined ATEX Ex ia, Ex db and Ex ic		(Note: 2)		EW	
IECEx Intrinsic Safety Ex ia					E8
IECEx Explosion Proof Ex db			(Note: 2)		E 9
IECEx Intrinsic Safety Ex ic					ER
IECEx Intrinsic Safety Ex ic Combined IEC Approval Ex ia and Ex db		(Note: 2)		EH	
Combined IEC Approval Ex ia, Ex db and Ex ic		(Note: 2)		EI	
NEPSI Intrinsic Safety Ex ia					EY
NEPSI Explosion Proof Ex d			(Note: 2)		ΕZ
NEPSI Intrinsic Safety Ex ic					ES
Combined NEPSI Ex ia and Ex	k d		(Note: 2)		EP
Combined NEPSI Ex ia, Ex d and Ex ic			(Note: 2)		EQ

...Ordering information

...ADDITIONAL ORDERING INFORMATION for model 266JST

 \dots Add one or more 2-digit code(s) after the basic ordering information to select all required options

	XX	XX	XX	XX	XX	XX	
Other Explosion Protection Certifications							
TR CU EAC Ex ia Russia (incl. GOST Metrologic Approval)	W1						
TR CU EAC Ex d Russia (incl. GOST Metrologic Approval)	W2						
TR CU EAC Ex ia Kazakhstan (incl. GOST Metrologic Approval)	W3						
TR CU EAC Ex d Kazakhstan (incl. GOST Metrologic Approval)	W4						
TR CU EAC Ex ia Belarus (incl. GOST Metrologic Approval)	WF						
TR CU EAC Ex d Belarus (incl. GOST Metrologic Approval)	WG						
ntegral LCD							
With integral LCD display		L1					
TTG (Through The Glass) integral digital LCD display		L5					
Mounting Bracket Shape / Material			_				
For pipe mounting / Carbon steel (Not suitable for AISI housing)			В1				
For pipe mounting / AISI 316 SST (1.4401) (Not suitable for AISI housing)			B2				
For wall mounting / Carbon steel (not suitable for AISI housing)			В3				
For wall mounting / AISI 316 SST (1.4401) (not suitable for AISI housing)			В4				
Flat type bracket / AISI 316 SST (1.4401) (Not suitable for AISI housing)			B 5				
Operating Instruction Language							
German				М1			
English				M5			
Label and Tag Language							
German					T1		
Italian					T2		
Spanish					Т3		
Franch					T4		
Additional Tag Plate							
Supplemental wired-on stainless steel plate (4 lines, 32 characters each)						11	
Laser printing of tag on stainless steel plate						12	
Stainless steel tag, certifikation and wire-on plates						13	
Configuration							
Standard – Pressure = inH2O/ psi at 68 °F; Temperature = deg. F							
Standard – Pressure = inH2O/ psi at 39.2 °F; Temperature = deg. F							
Standard – Pressure = inH2O/ psi at 20 °C; Temperature = deg. C							
Standard – Pressure = inH2O/ psi at 4 °C; Temperature = deg. C							
Custom							

		XX	XX	XX	XX	>
Certificates						
Inspection certificate 3.1 acc. EN 10204 of calibration		C1				
Inspection certificate 3.1 acc. EN 10204 of the cleanliness stage		C3				
Inspection certificate 3.1 acc. EN 10204 of helium leakage test of the sensor module		C4				
Inspection certificate 3.1 acc. EN 10204 of pressure test		C5				
Declaration of compliance with the order 2.1 acc. EN 10204 for instrument design		C6				
Printed record of configured data of transmitter		CG				
PMI test on wetted parts		CT				
Approvals						
GOST Russia Metrologic Approval			Y1			
GOST Kazakhstan Metrologic Approval			Y2			
GOST Ukraine Metrologic Approval			Y3			
GOST Belarus Metrologic Approval			Y4			
Det Norske Veritas naval approval			YA			
Material Traceability						
Certificate of compliance with the order 2.1 acc. EN 10204 for process wetted parts				Н1		
Inspection certificate 3.1 acc. EN 10204 of pressure-bearing and process wetted parts						
with analysis certificates as material	(Note: 4)			Н3		
Material certificate 2.2 acc. EN 10204 for the pressure bearing and process wetted parts				H4		
Connector						
With cable gland M20 x 1.5					U8	
Housing Accessories						
Integral mount manifold (price adder just for assembling, not for manifold)						

Note 1: Not available with Diaphragm Material code M, V, T, C, Y, D

Note 2: Suitable for Oxygen service

Note 3: Not available with Housing Material / Electrical Connection code ${\tt J}$

Note 4: Minor Parts with Factory Certificate acc. to EN 10204 $\,$

Standard delivery scope (changes possible with additional ordering code)

- Adapters supplied loose
- Sealing plugs for horizontal connection flanges on the process axis; not for PVDF Kynar insert or for vertical connection flanges (no vent / drain valves)
- For standard applications (without explosion protection)
- No display, no mounting bracket, no surge protector
- Multilanguage short operating instruction and English labeling
- · Configuration with kPa and °C units
- No test, inspection, or material certificates

IMPORTANT REMARK FOR ALL MODELS

The selection of suitable wetted parts and filling fluid for compatibility with the process media is a customers responsibility, if not otherwise notified before manufacturing.

NACE compliance information

- 1 The materials of constructions comply with metallurgical recommendations of NACE MR0175/ISO 15156 for sour oil field production environments. As specific environmental limits may apply to certain materials, please consult latest standard for further details. Materials AISI 316 / AISI 316L, Hastelloy C-276, Monel 400 also conform to NACE MR0103 for sour refining environments.
- 2 NACE MR0175 addresses bolting requirements in two classes:
 - Exposed bolts: bolts directly exposed to the sour environment or buried, encapsulated or anyway not exposed to atmosphere
 - Non exposed bolts: the bolting must not be directly exposed to sour environments, and must be directly exposed to the atmosphere at all times.

266CSH, 266CST, 266JSH, 266JST bolting identified by "NACE" are in compliance to the requirements of NACE MR0175 when considered "non exposed bolting".

Trademarks

- ™ Hastelloy C-276 is a Cabot Corporation trademark
- $^{\text{\tiny{TM}}}$ Hastelloy C-2000 is a Haynes International trademark
- ™ Monel is an International Nickel Co. trademark
- ™ Viton is a DuPont de Nemours trademark
- $^{\text{\tiny{TM}}}$ DC200 is a Dow Corning Corporation trademark
- ™ DC704 is a Dow Corning Corporation trademark
- ™ Galden is a Montefluos trademark
- $^{\text{\tiny{TM}}}$ Halocarbon is a Halocarbon Products Co. trademark
- $^{\text{\tiny{TM}}}$ Neobee M 20 is a Stepan Company trademark
- ™ Esso Marcol 122 is an Esso Italiana trademark
- ™ Syltherm is a Dow Chemical Company trademark

ABB Ltd.

Measurement & Analytics

Howard Road St. Neots Cambridgeshire PE19 8EU UK

Tel: +44 (0)1480 475321 Fax: +44 (0)1480 217948

ABB Inc.

Measurement & Analytics

125 E. County Line Road Warminster PA 18974 USA

Tel: +1 215 674 6000 Fax: +1 215 674 7183

abb.com/measurement

ABB S.p.A.

Measurement & Analytics

Via Luigi Vaccani 4 22016 Tremezzina Loc. Ossuccio (CO) Italy

Tel: +39 0344 58111

ABB Automation Products GmbH Measurement & Analytics

Schillerstr. 72 32425 Minden Germany

Tel: +49 551 905 534 Fax: +49 551 905 555

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

DS/266CSX/JSX-EN REV. B 11.2018